On the Kronecker Product s(n-p,p) * sλ
نویسندگان
چکیده
The Kronecker product of two Schur functions s λ and s µ , denoted s λ * s µ , is defined as the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group indexed by partitions of n, λ and µ, respectively. The coefficient, g λ,µ,ν , of s ν in s λ * s µ is equal to the multiplicity of the irreducible representation indexed by ν in the tensor product. In this paper we give an algorithm for expanding the Kronecker product s (n−p,p) * s λ if λ 1 − λ 2 ≥ 2p. As a consequence of this algorithm we obtain a formula for g (n−p,p),λ,ν in terms of the Littlewood-Richardson coefficients which does not involve cancellations. Another consequence of our algorithm is that if λ 1 − λ 2 ≥ 2p then every Kronecker coefficient in s (n−p,p) * s λ is independent of n, in other words, g (n−p,p),λ,ν is stable for all ν.
منابع مشابه
Multiplicities in the Kronecker Product s (n−p,p) ∗ sλ
In this paper we give a combinatorial interpretation for the coefficient of sν in the Kronecker product s(n−p,p) ∗ sλ, where λ = (λ1, . . . , λl(λ)) ⊢ n, if l(λ) ≥ 2p − 1 or λ1 ≥ 2p − 1; that is, if λ is not a partition inside the 2(p − 1) × 2(p − 1) square. For λ inside the square our combinatorial interpretation provides an upper bound for the coefficients. In general, we are able to combinat...
متن کاملA Combinatorial Interpretation for the Coefficients in the Kronecker Product s(n−p,p) ∗ sλ
In this paper we give a combinatorial interpretation for the coefficient of sν in the Kronecker product s(n−p,p) ∗ sλ, where λ = (λ1, . . . , λ`(λ)) ` n, if `(λ) ≥ 2p − 1 or λ1 ≥ 2p − 1; that is, if λ is not a partition inside the 2(p − 1) × 2(p − 1) square. For λ inside the square our combinatorial interpretation provides an upper bound for the coefficients. In general, we are able to combinat...
متن کاملA Combinatorial Interpretation for the Coefficients in the Kronecker Product
In this paper we give a combinatorial interpretation for the coefficient of sν in the Kronecker product s(n−p,p) ∗ sλ, where λ = (λ1, . . . , λ`(λ)) ` n, if `(λ) ≥ 2p − 1 or λ1 ≥ 2p − 1; that is, if λ is not a partition inside the 2(p − 1) × 2(p − 1) square. For λ inside the square our combinatorial interpretation provides an upper bound for the coefficients. In general, we are able to combinat...
متن کاملOn the Kronecker Product of Schur Functions of Two Row Shapes
The Kronecker product of two homogeneous symmetric polynomials P1 and P2 is defined by means of the Frobenius map by the formula P1 ⊗ P2 = F (F−1P1)(F−1P2). When P1 and P2 are Schur functions sλ and sμ respectively, then the resulting product sλ ⊗ sμ is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the diagrams λ an...
متن کاملKronecker Product Identities from D-finite Symmetric Functions
Using an algorithm for computing the symmetric function Kronecker product of D-finite symmetric functions we find some new Kronecker product identities. The identities give closed form formulas for trace-like values of the Kronecker product. Introduction In the process of showing how the scalar product of symmetric functions can be used for enumeration purposes, Gessel [3], proved that this pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005